Vacuum Energy and the cosmological constant puzzle

Steven Bass

- Accelerating Universe: believed to be driven by energy of „nothing“ (vacuum)

- Positive vacuum energy = negative vacuum pressure

- Vacuum energy density (cosmological constant or dark energy) is 10^{56} times less than what Standard Model particle physics „expects“, though curiously ~ (light neutrino mass)4

- Explore possible interface of dark energy and LHC results: Higgs vacuum (meta-)stability

VCES 2015 Vienna, November 28 2015
Dark energy and its size

• Particle physics
 • Nice thing (QED, QCD, Higgs, ... LHC, LEP ...)
 Standard Model works very well,
 no sign yet of BSM also in dark matter searches (Xenon100, LUX...),
 precision measurements: eEDM..., CPT and Lorentz invariance ...

 meets

• General relativity
 • Nice thing (Binary pulsars, lensing, black holes, Lab tests of Inverse
 Square Law to 56 µm...)

 → Curious result: „discrepancy“ of 10^{56} (!) + wrong sign (!)

 Also, within present errors, couplings and masses are time independent
Our evolving Universe
The Cosmological Constant Puzzle

• Cosmological constant behaves like a vacuum energy (plus counterterm)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -\frac{8\pi G}{c^2} T_{\mu\nu} + \Lambda g_{\mu\nu} \]

\[\Lambda = 8\pi G \rho_{\text{vac}} + \Lambda_0 \]

• Quantum field theory (particle physics): zero point energies

\[\rho_{\text{vac}} = \frac{E}{V} = \frac{1}{2} \sum \{ \hbar \omega_0 \} = \frac{1}{2} \hbar \sum_{\text{particles}} g_i \int_0^{k_{\text{max}}} \frac{d^3 k}{(2\pi)^3} \sqrt{k^2 + m^2} \sim \sum_i g_i k_{\text{max}}^4 \frac{1}{16\pi^2} \]

• „Normal ordering“ → zero,
 but then Spontaneous Symmetry Breaking (Higgs) and condensates

\[\Lambda_{\text{vac}} = 8\pi G \Lambda_{\text{ew}}^4 \]

\[\rho_{\text{vac}} = \frac{1}{2} \sum \hbar \omega \sim (250 \text{GeV})^4, \]

• Accelerating Universe corresponds to

\[\rho_{\text{vac}} = \mu^4, \quad \mu \sim 0.002 \text{ eV} \]
Phenomenological observation

- Dark energy scale $\mu_{\text{vac}} \sim 0.002 \text{ eV}$

If taken literally, this formula connects Dark Energy, neutrino physics and EWSB to a new high mass scale $M \sim 3 \times 10^{16} \text{ GeV}$ which needs to be understood.

- Suggests perhaps the cosmological constant puzzle and electroweak hierarchy problems might have a common origin at very high mass scale, close to the Planck mass (?)
• LHC: So far just Standard Model Higgs and no BSM, SUSY ...

• Remarkable: the Higgs and top mass sit in window of possible parameter space where the Standard Model is a consistent theory up to the Planck mass close to the border of a stable and meta-stable vacuum.
Electroweak Vacuum Stability

• Possible critical phenomena close to Planck mass with Standard Model as the long range tail of a critical Planck system.

• Is the Standard Model "emergent"?
 (cf. Low energy part of GUT spontaneously broken by multiple Higgs fields and condensates)

If yes, possible violations of Lorentz invariance, gauge invariance &tc at very high scales close to the Planck mass - perhaps vanishing with vanishing dark energy and suppressed in laboratory experiments by powers of μ/M.
Scales

- Dark energy scale ~ 0.002 eV
- Electroweak Higgs scale 250 GeV
- QCD Scale 1 GeV
- Planck mass (gravitation) 10^{19} GeV
- Light neutrino mass ~ 0.005 eV (normal hierarchy)
- Inflation (fourth root of r, Bicep2+) ~ 10^{16} GeV
- Jegerlehner (EWSB) 1.4×10^{16} GeV (sign change of c-term)
- GUTs 10^{15} GeV
Attempts to understand

- Analogy based on Ising model (spin magnet)
 \[H = -J \sum_{\langle i,j \rangle} \left(\sigma_i \sigma_j + \sigma_{i+1} \sigma_{j+1} + \sigma_{i+1} \sigma_j \right) . \]

- In the ground state all the spins line up and the energy per spin and free energy density go to zero, corrections are suppressed by powers of \(e^{-\beta J} \)

- With no external field, pressure is equal to minus the free energy density
 (same equation of state as cosmological constant)

- Looks like neutrino vacuum
 - Neutrinos so far observed are left handed
 - Free energy density in Statistical Mechanics
 \[\leftrightarrow \] vacuum energy density in Quantum Field Theory

- Resultant picture: Standard Model like an „impurity“ in a spin system which exists near the Planck scale, at about \(3 \times 10^{16} \) GeV. Phase transition involving the neutrino generates parity violation and Higgs phase for gauge bosons which couple to the neutrino. The vacuum energy of the Higgs system diluted by same physics which generates parity violation

\[\mu_{\text{vac}} \sim \frac{\Lambda_{\text{ew}}^2}{2M} \]

Where are we going?